problem 1:
a) $3 \Omega O C \rightarrow$ removed
5Ω series with $3 \Omega=8 \Omega$, shat circuited \rightarrow remove

$$
\begin{aligned}
& 3 \Omega\|2 \Omega\| 6 \Omega=1 \Omega \\
& 12 \Omega \| 4 \Omega=3 \Omega \\
& 4 \Omega / 18 \Omega=8 / 3 \Omega
\end{aligned}
$$

3Ω series with $1 \Omega=4 \Omega$

$$
4 \Omega / /(8 / 3) \Omega=\frac{8}{5} \Omega
$$

b)

$$
\begin{aligned}
& t \Omega / 1(813) \quad i=\frac{d q}{d t}=-3 A \Rightarrow V=-\frac{1}{6} x-3 \times \frac{8}{5}=-\frac{2 q}{5} v \\
& t=2 \text { to } v \\
& t=5 \text { to } 8 \quad i=1 A \Rightarrow V=\frac{8}{5} v
\end{aligned}
$$

Question 2

Use mesh analysis to calculate the power delivered by the 3 mA source in the network shown in Figure 3.

Figure 3

Solution

$$
\left\{\begin{array}{c}
3 k i_{1}+4 k i_{2}+2=0 \\
i_{2}-i_{1}=\frac{3}{k}
\end{array} \Rightarrow i_{1}=-2 m A\right.
$$

Or:

$$
V=3 k \times i_{1}=-6 V
$$

And:

$$
P=V \times 3 m A=-18 m W
$$

Question 3

Use superposition to find V_{0} in the network in Figure 4.

Figure 4

Solution

Short circuit 14V and 18V sources:

Therefore:

$$
V_{01}=1 k \times i=-5 V
$$

Short circuit 18 V and open circuit 7 mA sources:

Short circuit 14 V and open circuit 7 mA sources:

$$
V_{03}=0
$$

Finally:

$$
V_{0}=V_{01}+V_{02}+V_{03}=-5-4+0=-9 V
$$

Question' 4 :

Questions

To find $V_{O C}$, use node-voltage analysis:
KCL @ node $1 \Longrightarrow$

$$
\left.\begin{array}{l}
\frac{v_{1}-4}{2}=0.5 v_{x}+2 \\
\text { and } \\
v_{x}=2 x_{2}=4 v
\end{array}\right\} \Rightarrow v_{1}=12 \mathrm{v}
$$

Now $v_{0 c}=v_{x}+v_{1}=4+12=16 \mathrm{~V}$

$$
V_{T h}=V_{0 c}=16 \mathrm{~V}
$$

Use Meshanalysis:
super Mesh 1 and $\left.2 \Rightarrow-4+2 i_{1}-v_{x}=0\right\} 2 i_{1}+2 i_{2}=4$

$$
\text { Mesh 3 } \Rightarrow i_{3}=-2 A
$$

and $0.5 v_{x}=i_{2}-i_{1}, v_{x}=-2 i_{2} \int i_{3}=-2 \mathrm{~A}$

Then $i_{1}=\frac{4}{3} A, \quad i_{2}=\frac{2}{3} A, \quad i_{3}=-2 A$

$$
i_{s c}=i_{2}-i_{3}=\frac{2}{3}+2=\frac{8}{3} \mathrm{~A}
$$

Therefore $R_{T h}=\frac{V_{\text {oc }}}{l_{S C}}=\frac{16}{\frac{8}{3}}=6 \Omega$
The Thevenin equivalent is

b)

In order to ensure a maximum power transfer to R_{2}, we need to find the $R_{T h}$ of the The venin equivalent as seen by the resistance R_{2}. This gives

$$
R_{\text {th }}^{\prime}=R_{1}+6
$$

For maximum power tarsfer to R_{2}, we must have $R_{2}=R_{H}^{\prime}=R_{1}+6$

